The application process for The Prototyping Grant 2019 has now been closed.

Thamarasee Jeewandara

Droplet-Based Single-Cell Sequencing

Droplet-Based Single-Cell Sequencing

Cells form the basic unit of life and can broadly vary in biological structure and function. Nucleic acids encode the information of life by programming cellular functions at the level of transcription for specific biological outcomes. Single-cell genomics provides a window to characterize the identity and function of cells. Drawbacks of the technique include a lack of practical ease and scale. Sequencing information provides a map to understand the properties of a single cell; including the type, state and nature of its biology during its regular function and during pathogenesis. Since all cells are not alike, it is increasingly important to recognize the difference between cells for deeper insight into their behavior for tailored treatments in personalized medicine. It is possible to probe the properties of individual cells in the lab using advanced single-cell sequencing techniques. (more…)

Forensic DNA Analysis with Microfluidics

Forensic DNA Analysis with Microfluidics

Short tandem repeat (STR) typing (DNA fingerprints) is the existing gold standard for human forensic identification – easily performed with high-quality, single-contributor genetic samples. The DNA typing technique provides a reliable, rapid and sensitive analysis for parentage testing, forensic identification, and medical diagnostics. However, for evidence samples collected from a crime scene – the amount of DNA retrieved could be at a low concentration due to contributions from multiple individuals (cells, tissue, DNA). Resulting challenges include mixed genotypes in complex biological samples with more than one contributory DNA sample and the preferential amplification of a victim’s DNA compared to a perpetrator’s much rarer cell type. As a result, to reduce the challenges, a variety of strategies were developed to separate diverse cell populations prior to analysis. Techniques include microfluidics-based methods, microchip-based separation, micromanipulation, and laser capture microdissection. Limitations specific to the methods include their complexity, low efficiency, low throughput, lack of versatility and a high likelihood of cross-contamination. (more…)