Meet The Prototyping Grant Winner 2019!
  • blog

Blog

Mapping Microfluidics’ Future: “Where is the Unknown and How Can We Boldly Go There?”

Mapping Microfluidics’ Future: “Where is the Unknown and How Can We Boldly Go There?”

Renown stem-cell pioneer Dr. Hans Clevers will be a presenter at Cell Symposia in August 2019 in San Diego, USA. In a symposia preview, when queried by an interviewer about how he mentors his Netherlands-based team, Clevers said he guides new scientists by asking, “Where is the unknown and how can we boldly go there?” Although he was referring to training researchers, his words fit microfluidics’ future challenges too. (more…)

Micro-Soft-Robots are Already Here: Future Commercial Prospect

Micro-Soft-Robots are Already Here: Future Commercial Prospect

Soft robotics is a growing field, especially for soft robots mimicking simple living organisms and the so-called Bio-bots1. These Bio-bots combine soft-materials (skeleton) with muscle cells, (muscle or motor) and can shine another light on the biomechanics of soft-bodied animals, such as the ray fish2 and the Octopus3. Macro-scale soft or hybrid gripers are emerging to substitute the standard rigid ones, which provides a manipulation tool for more fragile objects (example in Figure1)4,5,6. (more…)

Fabrication Challenges in Early Stage Startups

Fabrication Challenges in Early Stage Startups

When commercializing a microfluidic technology, you start with a contraption put together from wires, tubing, pumps, power supplies, and microscopes, and you turn it into an instrument other labs can buy from a catalog-like a plate reader. Part of this journey is a transformation of your fabrication techniques. Here we will talk about the fabrication challenges when commercializing a microfluidic technology in an early stage startup; we will not look into other aspects of product development. Furthermore, we will mostly discuss the fabrication of microfluidic components and not other components like printed circuit boards. (more…)

Managing Real-State on Centrifugal Microfluidic Platforms

Managing Real-State on Centrifugal Microfluidic Platforms

Centrifugal microfluidic platforms, also called compact microfluidic biodisks or compact disks (CD), have been around for almost four decades and have seen a surge in technology advancement in the last decade1. CDs are used in rapid immunoassaying and clinical biochemistry for blood diagnostics. They are used as micro total analysis systems (μTAS), in which several individual assays are embedded and run simultaneously on a single chip. They operate on simple inexpensive motors programmed for hands-free control and do not require external actuators such as magnets or surface treatments. Basically, CDs are great, and this article should end here. Unfortunately, there is a catch: due to unidirectional (radial) centrifugal forces, CDs run out of real estate faster than non-rotating microfluidic devices. (more…)

Combining the Pieces in Microfluidics for Personalized Cancer Therapy

Combining the Pieces in Microfluidics for Personalized Cancer Therapy

Personalized cancer therapy is a treatment strategy based on the ability to predict which patients are more likely to respond to specific cancer therapies1. Different factors such as tumor biophysical markers, tumor site, patient genetic factors, and characteristics need to be considered in determining a specific therapy for a patient. Tumor biophysical markers including phenotypes and genotypes are associated with patient prognosis and response to therapy as phenotypes like size, shape, stiffness of individual cells within a tumor can be correlated with the state of the disease and genotypic information from DNA, RNA and protein sequencing can reveal genomic alterations. Moreover, patient genetic factors are also important as they can be associated with drug metabolism, drug toxicity, and overall drug response. (more…)

Droplet-Based Single-Cell Sequencing

Droplet-Based Single-Cell Sequencing

Cells form the basic unit of life and can broadly vary in biological structure and function. Nucleic acids encode the information of life by programming cellular functions at the level of transcription for specific biological outcomes. Single-cell genomics provides a window to characterize the identity and function of cells. Drawbacks of the technique include a lack of practical ease and scale. Sequencing information provides a map to understand the properties of a single cell; including the type, state and nature of its biology during its regular function and during pathogenesis. Since all cells are not alike, it is increasingly important to recognize the difference between cells for deeper insight into their behavior for tailored treatments in personalized medicine. It is possible to probe the properties of individual cells in the lab using advanced single-cell sequencing techniques. (more…)

Microfluidic Heat Exchanger, a Unique Solution for Cooling of the Latest Electronic Devices

Microfluidic Heat Exchanger, a Unique Solution for Cooling of the Latest Electronic Devices

When a lot of electro-mechanical systems have been miniaturized and integrated by compact design, thermal management in a small volume should be simultaneously considered. As the devices or systems become smaller, heat flux increases in general. Therefore, an effective cooling strategy for the micro-devices is required especially when the cooling target is made from microfabrication processes. The microfluidic heat exchanger is one of the most promising devices for cooling down the electronic systems because it can be also made by the microfabrication processes1. This device which is also called microchannel heat sink has been considered as an effective heat removal tool and has caught much attention during the past decades, due to its advantages including high heat transfer performance, mild pressure loss and easy fabrication2. (more…)

Commercialisation Opportunities of Microfluidics as Miniaturized Wearable Devices

Commercialisation Opportunities of Microfluidics as Miniaturized Wearable Devices

Microfluidic technology is based on devices capable of handling micro to picolitre amounts of samples, and their applications are diverse ranging from pharmaceuticals, healthcare to the chemical industry. As this technology is being embraced across industries and academic fields, its market value has been steadily increasing into a billion-dollar value. To understand the current and the future market of microfluidics the origin of these “micro-plumbing” devices must be reviewed. Microfluidic technology can first be found in analytic methods such as gas-phase chromatography (GPC), high-pressure liquid (HPLC) and capillary electrophoresis (CE) driven by technological demands in breakthroughs in molecular biology in the 1980s such as genomics and DNA sequencing1. (more…)

Being Able to Build Human Blood Vessels as Organoids from Stem Cells is a Game Changer

Being Able to Build Human Blood Vessels as Organoids from Stem Cells is a Game Changer

The more that is learned about how microfluidic processes control or contribute to cellular change, the sooner science will be able to design a cost-effective medical treatment based on that information. New research on microtubules and blood-vessel organoids augments this.

Recent findings by a team of engineering and medical scientists at Stanford University shed new light on how cell components move around and self-renew. Part of the study’s focus was on the link between microtubules and self-organization. (more…)

A Brief Introduction to Digital Microfluidics

A Brief Introduction to Digital Microfluidics

In the early 1900s when digitization of data came about to be a boom in data processing technology, one wouldn’t have imagined that similarly a droplet containing biological samples could be digitized in order to be processed in a programmed order of complex reactions. Digital microfluidics (DMF) has made it possible to perform a stepwise procedure on precise quantities of liquid on a microscale thereby combining the benefits of microfluidics as well as discrete processing of information. (more…)