Let the industry know about your research - join our community as a guest writer!

Posts Tagged "microfluidics"

How Organ-on-a-Chip Technology Might Be Used (and Abused) in the Elective Consumer Space

How Organ-on-a-Chip Technology Might Be Used (and Abused) in the Elective Consumer Space

Names carry weight. The names of prestigious institutions and prolific scientists offer credibility. So too do scientific (and pseudoscientific) monikers: “double-blind clinical trials” assure integrity through rigor, and “superfoods” assure immortality though public misconception. As with “superfoods,” are we too prone to letting our imaginations run wild with scientific hype? Human- and organ-on-a-chip technology commands attention with its abundant potential in drug development and disease research, but also with its name’s sci-fi mystique. (more…)

Rising Demand for Point-of-Care Testing and Significant Return on Investment: Key Driving Factors of the Microfluidics Market

Rising Demand for Point-of-Care Testing and Significant Return on Investment: Key Driving Factors of the Microfluidics Market

Rising demand for point-of-care testing

The rising prevalence of lifestyle-related & infectious diseases and an increasing preference for self-testing are driving the global point-of-care diagnostics market. In addition, growing private investments and the availability of venture funding for the development of new products, coupled with government support for improving the adoption of POC devices, are further supporting the growth of the POC diagnostics market. The rising incidence and prevalence of various diseases, coupled with product miniaturization and the decentralization of healthcare, are the major factors that are expected to offer significant growth opportunities to players operating in the POC diagnostics market. (more…)

Why Hasn’t Microfluidics Reached Consumer Market Despite a Huge Number of Academic Inventions and Publications During the Past 15 Years?

Why Hasn’t Microfluidics Reached Consumer Market Despite a Huge Number of Academic Inventions and Publications During the Past 15 Years?

For over three decades, a revolutionary impact of microfluidic technology on science and industrial applications has been envisioned; however, such predictions have not been met regardless of a large number of academic publications and even patents. Fervently, the number of publications rose from a few dozen publications per year in 2000 to the thousands in 2012; yet a killer application has not been realized either for academic research nor for the industry1. The obvious question is why the gap between the proof-of-concept microfluidic development found in these publications and the mainstream market has not yet been breached.  (more…)

Microfluidic Environments Nurture Stem Cells on Their Journey Toward Commercialization

Microfluidic Environments Nurture Stem Cells on Their Journey Toward Commercialization

The name “stem” cells came from plant stems, which, despite their tiny size, have the capacity to produce flowers, leaves, branches, fruit, vegetables, and gigantic trees. In the same way, stem cells, although microscopic, contain the potential to develop into different body parts — to repair or replace diseased or injured cells. Stem cells can differentiate, which means they can become a retina or pancreas cells, skin cells or shin cells, cells specific to the nose or to the toes. Stem cells are sustained by a microfluidic environment of supporting blood vessels and channels for other fluids. And a stem cell’s microfluidic environment influences the decision about what body part it will become. (more…)

Recent Microfluidics Advances, on Earth and Above It

Recent Microfluidics Advances, on Earth and Above It

Harnessing the potential of microfluidics applications is underway in every corner of the globe, and stretching out to deep space as well.

In Japan, cancer researchers are building microfluidic chip cell sorters for capture and analysis of Circulating Tumor Cells (CTC), an endeavor that historically has ranged from challenging to impossible. Their “On‐chip Sort” detected and captured rare CTCs from patients with lung adenocarcinoma, which have typically been undetectable. Mutation detection using isolated CTCs is their next goal. (more…)

Breathing Like in the Mother’s Womb

Breathing Like in the Mother’s Womb

The lungs are the last organs to develop and mature before the birth. A preterm baby, born earlier than 37 – 39 weeks of pregnancy, will have underdeveloped lungs and consequently will be under respiratory distress, struggling to breathe. As a result, these underdeveloped lungs are not able to produce surfactants, a slippery substance that keeps the air sacs open in inhalation, and easily collapse during exhalation. According to the World Health Organization, premature birth is the main reason of death in children aging less than 5 years and its rate is increasing all over the world. Every year 15 million premature births occur resulting in 1 million death each year due to complications of preterm birth. Even survivors may wind up with long-term complications in their adulthood. (more…)

As Microfluidic Systems Come of Age, Both Rough Waters and Smooth Sailing Lie Ahead

As Microfluidic Systems Come of Age, Both Rough Waters and Smooth Sailing Lie Ahead

A Most Frequently Asked Question is posed in the May 2018 Cell Science headline: “Will Microfluidic Cell Culture Fulfill its Long-awaited Potential?” The article notes that the first research papers on microfluidic cell culture are now nineteen years old: “Microfluidic cell culture has now outgrown its infancy and is about to survive its teenage years. It has matured considerably but still needs to transition from academia into clinics and industry. Will it come of age?” Now that it’s ready to exit adolescence, how will it leave the academic nest? (more…)

Microfluidics and the Drug Discovery Pipeline

Microfluidics and the Drug Discovery Pipeline

From antibiotics to antihistamines, every reader has at some point benefited from the range and power of modern medicines. But the cost of drug development is a bitter pill to swallow. Did you know, on average, it takes around 12 years and over £1bn to develop each new medicine1? (more…)

How Did Microfluidics Change Biological Research?

How Did Microfluidics Change Biological Research?

In conventional laboratories, a range of available technologies enables scientists to genetically engineer cells, study their migration patterns, determine their mechanical properties and even analyze genetic differences. Nevertheless, protocols for such experiments are set in place by standard equipment and commercial kits, often requiring considerable labor and cost. Although some degree of flexibility is permitted in the alteration of certain parameters, results could be compromised by such change. As such, most biologists are typically averse to making changes to their setup. Performing experiments has thus far meant using gold standard instruments from established pharmaceutical and biotechnological companies. For example, one could start their day preparing 10 L of media for culturing microorganisms in a large chemostat; use a DNA extraction kit to lyse the cells, numerous rounds of centrifugation; DNA purification; proceed on to amplification and target detection using a benchtop real-time Polymerase Chain Amplification (rt-PCR) machine. However, consider this. What if a device the size of a standard laboratory glass slide is able to accomplish these steps from cell culture to mutation identification in half the time and perhaps even half the cost? (more…)

What’s a Discman and How Is It a Medical Diagnostic Device? (CD Microfluidics)

What’s a Discman and How Is It a Medical Diagnostic Device? (CD Microfluidics)

When I started my pursuit to become a Biomedical Engineer, the last thing I would have ever thought I would end up working in is microfluidics. And why is that? Well, as others in the field have previously discussed, along with friends and family, and even myself; we did not know what microfluidics was. However, this shortly changed as I was fortunate to stumble into the Bio-MEMS laboratory of Dr. Marc Madou at the University of California, Irvine. Dr. Madou specializes and focuses on a specific area of microfluidics known as Compact-Disk or CD microfluidics. One of my fondest memories in the lab was watching a video of Dr. Madou on TedxTalks describing how he was going to turn a Sony Discman into a medical diagnostic device and all I could think to myself was…“What is a Discman?” (more…)

12