Let the industry know about your research - join our community as a guest writer!

Kathy Jean Schultz

Seeing is believing: Tissue-chips on the quest to end blindness

Seeing is believing: Tissue-chips on the quest to end blindness

In 2007, Doug Oliver nearly hit two pedestrians while driving his car, and then turned a corner and almost hit a third. He had not seen the pedestrians at all. A police officer gave him two choices: hand over your driver’s license or see an eye doctor. The doctor gave a chilling diagnosis: “At 45, I was legally blind. I went into shock,” Oliver said.

Oliver was born with good eyesight, but due to a hereditary condition, over a decade he had gradually lost much of his vision. For years his sight had been worsening until he underwent experimental stem cell surgery in a Florida-based treatment study. His vision loss was reversed by that surgery in 2015. “I went from legally blind to legal-to-drive in eight weeks,” said the Nashville, Tenn., man. (more…)

Organs-on-Chips and Animal Lovers: Dovetailing on the Medical Frontier

Organs-on-Chips and Animal Lovers: Dovetailing on the Medical Frontier

The impact of organoid research on popular culture is nowhere more evident than in the common ground between innovation and animal rights proponents. Organs-on-chips harbor the potential to reduce animal testing of new drugs and cosmetics. In 2017, the U.S. National Center for Advancing Translational Sciences funded 13 institutions with awards to develop tissue-on-chip models. Several of the awards mirror four-legged friends’ enduring goals.

Muscle disease is one example. One of the NCATS awards is for “Systemic Inflammation in Microphysiological Models of Muscle and Vascular Disease.” This Duke University project focuses on skeletal muscle and blood vessels. The models will replicate inflammation, in order to assess variation in responses to drugs. A similar award went to Cedars-Sinai Medical Center for “Development of a Microphysiological Organ-on-Chip System to Model Amyotrophic Lateral Sclerosis and Parkinson’s Disease,” to highlight novel biomarkers. There is no cure for ALS, a neurological condition that stops voluntary muscle movements including chewing, walking, talking and ultimately, breathing. Animal rights proponents welcome these endeavors because they have been vexed for years by the use of dogs for research that leaves them crippled with muscular dystrophy and unable to walk, swallow, or breathe. (more…)

We Have Liftoff: Organs-on-Chips in Space

We Have Liftoff: Organs-on-Chips in Space

When British neuroscientists began developing brain organoids to study autism and schizophrenia some years ago, their colleague Dr. Martin Coath, of the University of Plymouth, publicly stated that they were fueling a crisis: “A human brain that was ‘fully working’ would be conscious, have hopes, dreams, feel pain, and would ask questions about what we were doing to it.”

Fears akin to Coath’s have trended ever since Mary Shelley wrote “Frankenstein” in 1818. While it is unlikely that organoids will be asking what we’re doing to them anytime soon, it is likely that they will be doing some space traveling.

The U.S. Center for the Advancement of Science in Space (CASIS), in collaboration with the U.S. National Center for Advancing Translational Sciences (NCATS) and the National Institute of Biomedical Imaging and Bioengineering (NIBIB), plan to study organs-on-chips onboard the International Space Station-National Laboratory (ISS-NL). Data from this effort will contribute to research about microphysiological systems technologies. (more…)