Let the industry know about your research - join our community as a guest writer!
  • blog

Blog

Exploring Possibilities and Bridging the Gaps in Microfluidics Research

Exploring Possibilities and Bridging the Gaps in Microfluidics Research

Microfluids has come very far since its origin1 and found applications in a broad range of fields. It would be better if I skip the common applications as readers of the blog might be well aware of these applications and bring your attention towards unexplored and emerging new directions in liquid crystal research. The field of microfluidics has barely crossed lines with liquid crystals – nature’s delicate phase of mater2. Liquid crystals are wonderful materials not only because of their beautiful, vibrant textures or their ubiquitous use in the flat panel display technology but also because of their unique molecular alignment which gives them an orientational order like solid and flow properties of liquids. This is why they are sometimes referred to as the fourth state of matter. (more…)

Forensic DNA Analysis with Microfluidics

Forensic DNA Analysis with Microfluidics

Short tandem repeat (STR) typing (DNA fingerprints) is the existing gold standard for human forensic identification – easily performed with high-quality, single-contributor genetic samples. The DNA typing technique provides a reliable, rapid and sensitive analysis for parentage testing, forensic identification, and medical diagnostics. However, for evidence samples collected from a crime scene – the amount of DNA retrieved could be at a low concentration due to contributions from multiple individuals (cells, tissue, DNA). Resulting challenges include mixed genotypes in complex biological samples with more than one contributory DNA sample and the preferential amplification of a victim’s DNA compared to a perpetrator’s much rarer cell type. As a result, to reduce the challenges, a variety of strategies were developed to separate diverse cell populations prior to analysis. Techniques include microfluidics-based methods, microchip-based separation, micromanipulation, and laser capture microdissection. Limitations specific to the methods include their complexity, low efficiency, low throughput, lack of versatility and a high likelihood of cross-contamination. (more…)

How Organ-on-a-Chip Technology Might Be Used (and Abused) in the Elective Consumer Space

How Organ-on-a-Chip Technology Might Be Used (and Abused) in the Elective Consumer Space

Names carry weight. The names of prestigious institutions and prolific scientists offer credibility. So too do scientific (and pseudoscientific) monikers: “double-blind clinical trials” assure integrity through rigor, and “superfoods” assure immortality though public misconception. As with “superfoods,” are we too prone to letting our imaginations run wild with scientific hype? Human- and organ-on-a-chip technology commands attention with its abundant potential in drug development and disease research, but also with its name’s sci-fi mystique. (more…)

Rising Demand for Point-of-Care Testing and Significant Return on Investment: Key Driving Factors of the Microfluidics Market

Rising Demand for Point-of-Care Testing and Significant Return on Investment: Key Driving Factors of the Microfluidics Market

Rising demand for point-of-care testing

The rising prevalence of lifestyle-related & infectious diseases and an increasing preference for self-testing are driving the global point-of-care diagnostics market. In addition, growing private investments and the availability of venture funding for the development of new products, coupled with government support for improving the adoption of POC devices, are further supporting the growth of the POC diagnostics market. The rising incidence and prevalence of various diseases, coupled with product miniaturization and the decentralization of healthcare, are the major factors that are expected to offer significant growth opportunities to players operating in the POC diagnostics market. (more…)

Why Hasn’t Microfluidics Reached Consumer Market Despite a Huge Number of Academic Inventions and Publications During the Past 15 Years?

Why Hasn’t Microfluidics Reached Consumer Market Despite a Huge Number of Academic Inventions and Publications During the Past 15 Years?

For over three decades, a revolutionary impact of microfluidic technology on science and industrial applications has been envisioned; however, such predictions have not been met regardless of a large number of academic publications and even patents. Fervently, the number of publications rose from a few dozen publications per year in 2000 to the thousands in 2012; yet a killer application has not been realized either for academic research nor for the industry1. The obvious question is why the gap between the proof-of-concept microfluidic development found in these publications and the mainstream market has not yet been breached. (more…)

Microfluidic Environments Nurture Stem Cells on Their Journey Toward Commercialization

Microfluidic Environments Nurture Stem Cells on Their Journey Toward Commercialization

The name “stem” cells came from plant stems, which, despite their tiny size, have the capacity to produce flowers, leaves, branches, fruit, vegetables, and gigantic trees. In the same way, stem cells, although microscopic, contain the potential to develop into different body parts — to repair or replace diseased or injured cells. Stem cells can differentiate, which means they can become a retina or pancreas cells, skin cells or shin cells, cells specific to the nose or to the toes. Stem cells are sustained by a microfluidic environment of supporting blood vessels and channels for other fluids. And a stem cell’s microfluidic environment influences the decision about what body part it will become. (more…)

Recent Microfluidics Advances, on Earth and Above It

Recent Microfluidics Advances, on Earth and Above It

Harnessing the potential of microfluidics applications is underway in every corner of the globe, and stretching out to deep space as well.

In Japan, cancer researchers are building microfluidic chip cell sorters for capture and analysis of Circulating Tumor Cells (CTC), an endeavor that historically has ranged from challenging to impossible. Their “On‐chip Sort” detected and captured rare CTCs from patients with lung adenocarcinoma, which have typically been undetectable. Mutation detection using isolated CTCs is their next goal. (more…)

Breathing Like in the Mother’s Womb

Breathing Like in the Mother’s Womb

The lungs are the last organs to develop and mature before the birth. A preterm baby, born earlier than 37 – 39 weeks of pregnancy, will have underdeveloped lungs and consequently will be under respiratory distress, struggling to breathe. As a result, these underdeveloped lungs are not able to produce surfactants, a slippery substance that keeps the air sacs open in inhalation, and easily collapse during exhalation. According to the World Health Organization, premature birth is the main reason of death in children aging less than 5 years and its rate is increasing all over the world. Every year 15 million premature births occur resulting in 1 million death each year due to complications of preterm birth. Even survivors may wind up with long-term complications in their adulthood. (more…)

As Microfluidic Systems Come of Age, Both Rough Waters and Smooth Sailing Lie Ahead

As Microfluidic Systems Come of Age, Both Rough Waters and Smooth Sailing Lie Ahead

A Most Frequently Asked Question is posed in the May 2018 Cell Science headline: “Will Microfluidic Cell Culture Fulfill its Long-awaited Potential?” The article notes that the first research papers on microfluidic cell culture are now nineteen years old: “Microfluidic cell culture has now outgrown its infancy and is about to survive its teenage years. It has matured considerably but still needs to transition from academia into clinics and industry. Will it come of age?” Now that it’s ready to exit adolescence, how will it leave the academic nest? (more…)

Microfluidics and the Drug Discovery Pipeline

Microfluidics and the Drug Discovery Pipeline

From antibiotics to antihistamines, every reader has at some point benefited from the range and power of modern medicines. But the cost of drug development is a bitter pill to swallow. Did you know, on average, it takes around 12 years and over £1bn to develop each new medicine1? (more…)